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ABSTRACT

The narrowband ambiguity Iunction has been used to
study the space-time resolution of radar and sonar signals.
Its derivation, properties, andgeneralizations are reviewad
in a unifying notation. A ""'most general ambiguity function"
is defined, from which both narrowband and wideband am-
biguity functions can be derived.
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A REVIEW OF NARROWBAND AMBIGUITY FUNCTIONS

INTRODUCTION

The narrowband ambiguity function was introduced by Woodward (1) in 1953. Its
properties have been extensively explcred and used to study range and velocity resolu-
tion of radar and sonar targets by Woodward (1) and others (2-41). The wideband am-
biguity function is of more recent origin and has not yet been as [ully developed. Refer-
ences to both functions are scattered through the literature, in v idzyy varying notations.
This report reviews the derivations and properties of the narrowband function aid some
of its generalizations, using a consistent notation. A companion report ("A Review of
Wideband Ambiguity Functions,") is concerned with the wideband function and the rela-
tionship between the two functions.

These reports originated as a set of notes for a Branch Seminar and have been re-
vised for more widespread distribution. The intent was to elaborate on and explain
Woodward's (1) Chapter 7 and then to discuss seme of the subsequent work. To facilitate
reference to Woodward, the initial sections follow his work closely. Notational changes
were necessary for consistency in the sequel. Details of some of the developments have
been relegated to the appendices.

RESOLUTION AND AMBIGUITY
Range Ambiguity

Let a signal transmitted at time ¢ be represented by the real part of the analytict
signal ¥(t). We consider first the problem of range resolution of point targets, where
range is determined by the known velocity of propagation and the measured delay in the
signal echo. We agsume no attenuation., To achieve maximwn resolution, we would like
the echo ¥(t - ) to differ as much as possible from ¥(t). Using a mean-square cri-
terion, we would likef

Jiw(ty - w(e-T1)1! de (1)
to be as large as possible, except, of course, near = 0., That is, we wish t0 maximize
JI¥cy - Y- ¥ () - ¥4 (- 7)) dt
S LW de s oW -T)]R de - [W(EYVEE T)y dt - [W(t- Ty W) dt

S 2E - 2RE IV (Y WE(L- T Ot)

where [|¥(2)}> at [iw(t-7)? dt . E, the total energy of the analytic signal or twice
the total energy of the real signal. Equivalently, we wish to minimize

a

tA complex signal is said to be analytic if its imaginary part is the Hilbert transform of its real
part: Im [V (t)) - #{REI¥ ()]},

IHere and in the sequel integratlon is over the entire space of the appropriate dimension, i« for
all single integrals, unless otherwise stated.
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kP Jetywr(t -1y dt] (2)
except near ~ = 0. Let

Yty = u(t)exp (dut) . 3
Then

PHt-T) = ub(t-Tyexp [-iw(t-T)] .
and Eq. (2) becomes
RE [exp (dwT) Ju(t) u*(t-T) dt) 4)
which osacillates with -,
The requirement is that |k(r)| be a8 small as possible, where
R(T)efu(t)u‘(t-'r) dt (5)

is the complex autocorrelation function, and the symbol 2 means "is equal by definition
to.” Sincet

Feplu(e-7)] = Ju(t-Tyexp(-2mift) dt = exp(-2mifT)U(f) ,
Parseval's theorem gives us from Eq. {5)
R(r) = JIUCH)|? exp (2mifry df = SHUCHT . Gl
Furthermore, R(0) = [lu(t)|? dt = [|UF)|* df = E.

As a measgure of total signal ambiguity, Woodward (1) defines the time-resolution
constant

s 1 _ |
TE S TIRWI d7 = (Ut ar "
where the last equality again uses Parseval's theorem.

Ambiguity ia Range and Velocity

If the effect of moving targets is assumed to be adequately approximated by a simple
shift in frequency, we can define in an analogous fashion in terms of the frequency shift a
"frequency autocorrelation function”

x(®) & JUCEYUS(F-0) df 8

flu()|? exp(-27i0t) dt = Fo[lu(t)]?) . )l

i

+in general, ¥,,[7(x)] = 4(y) symbolizes the Fourier transform j(v) = [ £(xy exp (-2mixy) dJx.
The inverse transform will be symbolized by ff;" {a(r)) = f(x) = | g(y) exp (2mixyy dy,
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since f [U(Ff-®)] = exp (2midt) u(t).

Without loss of generality we can let £ = 1, and by analogy with Eq. (7) define the
frequency resolution constant

FOTia(®|? do = flu(ty]* dt . (10)
where the second form comes from Eg. (8), using Parseval's theorem.
If the targets are at different ranges and are moving with different radial velocities,
we need a combined time and frequency correlation function (two-dimensional correla-
tion function). For the time being we congider only the narrowband approximation:

The Doppler effect is approximated by a freguency shift ¢, constant across the signal
bandwidth.

The echo of ¥(¢)is thus given by ¥(t- 7) exp [2nid(¢t ~7)]. Again, we let ¥(¢) =
u(t);xp(iwl) = u(t)exp(2mifty. The function to be minimized is now, by analogy with
- 4),
RE [exp (2midr) [W (L)W (t - T) exp (-2mi®() dt)
s RE(exp [2ni(F+ @) 7) Ju(t)u*(t - T) exp (-27id2) dt] .
We require the modulus of the combined time and frequency correlation function
X(T.®) 2 fu(ty u*(t=7)exp(~27i®t) dt (11)

to be as small as possible, except near {x(0,0)| - E - 1.

The ambiguity function (Woodward ambiguity function, narrowband ambiguity func-
tlon, n-b autoambiguity function) is defined as

A(T.0) 2 x(m. o)) (12)

Other definitions of the generalized autocorrelation function (GACF) which lead to
the same ambiguity fuiiction appear in the literature. For example, let

> (T 2 JTu(r 7. 2yud*t-7 2yexp(-27ibt) dt
S fumyu* (- Tyesp [- 20y - T/2)) dy
Coexp(midTyN(T.9) .
so that
[x (7.1 Ix(r. 12 .

The present definition, Eq. (11}, has some useful trans{urmation properties which
will be discussed later,

The name of the ambiguity function stems from the fact that it does not uniquely de-
termine a waveform. For example, let the GACF of Eq. (11) be labled \ , 7. ¢) to dis-
tinguish it from \ v .y socnetor cvesps 200y dt. where vy wuit), Ambiguity is
apparent if we consider the frequency-shifted and ime-delayed waveform
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4 D. A, SWICK

v(t) = u(t-e€)exp(2nigt) ,
where ¢ = 0 and 6 £ 0. Then

Ixg(r ®I? .

1

Ixu (7. ®)]?

SOME PROPERTIES OF THE GENERALIZED AUTOCORRELATION
FUNCTION AND THE WOODWARD AMBIGUITY FUNCTION

x(7.0) = Ju(t)u*(t~7) dt = R(T) (13)
X(0.0) = [flu(t)|? exp(~2midt) dt = x () (14)
¥(0,0) = Jlu(ty|?dt = E=1 . {15)

Theorem 1
The GACF as an integral in the frequency domain is given as
X(7T,®) = JUS(FYU(Ff+®)yexp(2nifr) df . (16)

The proof of theorems 1 through 4 will be found in Appendix A.

Theorem 2
Th- combined time-{requency resolution constant is given as
[Jix(r.@)|* drde = 1. (17
“The effective ‘area of ambiguity’ in the time-frequency domain is independent of the
transmitted waveform and is equal to unity.” Thistheorem is called the ""Radar Uncer-
tainty Principle” by Siebert (3). It is one of the most important properties of the narrow-

bard ambiguity function and will be discussed further after some examples have been
considered.

Tieorem 3

{x (1. ®)]* £ x2(0,0y = 1. (18)

Theorem 4 (Siebert's theorem (4))

The ambiguity function is its own two-dimensional Fourier transform:

II1x (7. @)|? exp {-2mi (F7-®t)) drdd = |X(¢t,F)|% . (19)

Theorem 2 can be obtaired from Eq. (19) with ¢ = f = 0.
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Symmetry
N(=7,-0) = [u(t)yu*(t +T)exp(2nidt) dt = Ju(n-T)u¥(qg)exp [2mi®(n - T)] dp
= exp (- 2midT) x¥(7.9)

INCT-0) 2 - Ix(ney)? . (20)

Relationship to Matched Filter
Consider a filter riatchcd to a real transmitted signal u(¢); the impulse response
is h(t) = u(T- t). Let the input to this filter be the time-deiayed and frequercy- shifted
waveform
x(t)y = u(t+ryexp[-2mi®(t+T)] .

Then the output is y(¢t) - x(t) «h(t) - [ x(a) h(t-a) da

y(t) = fu(a+7yexp [-2nid(a+7)] u(T-t+a) da
Tlu(Byu(B- 7+ T-t)exp(-2midp) dg

v(T) = x{7.9) .

Thus, the GACF is the outpul of a filter matched to the transmitted signal in re-
sponse to an echo with constant time delay and constant frequency shift (narrowband ap-
proximation to Doppler effect).

Convclution Theorems
Theorem 5
If two functions are convolved in the time (frequency) domain, their generalized

autocorrelation functions are convolved in the time (frequency) coordinate.

Proof of frequency conveclution case

Let u(t) = v(t)yw(t). Then U(f) = v(F) «W()
X(T.®) = JUNEHYU(F+ ) exp(2mifry df
= J’HV*(,,)I'*([-,()V(V)W(h¢-u)exp(2rifr) dydvdf
= IV VW m W+ p- v +9) exp [27i(n+#)7) dndudr
= JIV*@uy V(oY Xy (T - v + @ ) exp (27iuT) dudy
= JIVERY V(s +4) exp (2mipT) X, (7.0 ¢ ) dedl
= IX (T L) XW(T -2y d¢

N7 D) XL ®)
¢

p—-



6 D. A. SWICK

where § indicates convolution with respect to . The proof of the time convolution case
is simifa.r The operation of these two theorems is noncommutative (31),
Uniqueness Theorem
Theorem 6

The function u(t) is uniguely determined to within a multiplicative constant of unit
magnitude almost everywhere (a.e.) by its generalized autocorrelation function.
Proof

Ix,(m.®)dT = [fu(t)u(t-T)exp(-2nidt) dtdr

Tu(tyexp(-2midt) fu*(n) dydt = U(®YU*(0) .

Therefore, if x (7.9) = x,(7.®), V(®)V*(0) = U(®)U*(0) and hence il V*0) = 0,
V(¢®) = cU(®), where c = U*(0)/V*(0). Since two functions having the same Fourler
transform are equal a.e., we have v(t) = cu(t), a.e., and

Ny(To®) = X (7,9) = {ou(c) c*ut(t-T) exp (-2midt) dt = |c|? x (7.0} .

80 that |c| = 1,

Complex Energy Density Function

Rihaczek (41) has recently defined a complex energy density funccion which may be
cbtained aa the Fourier transiorm of the GACF.

Consider a real signal represented by R{ [u(¢t)], where u (¢) is an analytic signal,
and let

[u¢tyl® dt = [|UChHy)® df = E
where £ is twice the total energy ot the real signal.
Then |u(t)|® represents power, or "energy density waveform,” and U (F) |? is the
energy density spectrum. I the autocorrelation function of u(¢t) is given by Eq. (5}, then
from Eq. (6), or by the Wiener-khintchine theorem, the spectral density is

W(Fy = 5, (R(m)] = (U 2y

Similarly, the autocorrelation function in the frequency domain, Eq. (8), transforms
into the "“waveform density.” From Eq. (9) we have

Toi [x(®] = Ju(ny]? . (22)

By analogy, the two-dimensional Fourier transform of the GACF is

1 k.,
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.‘f;,‘ S (7. 9) gff x(T.®yexp [-2mi(fr-®t)] dvdd

~JIfu@yut(n - Tyexp(-2midyyexp [ 2ni( fr- $t)) dndrdd

"

u(ty Ju¥(t - Ty exp(-2mifr)y dr

u(t)exp (=2mift) [ub(g)exp(2mifly d¢

= u(t)yU*(Fyexp(-2mifty . (23)
Thus, just as the autocorrelation functions in time and in frequency each are the
Fourier transforms of an energy density function, as shown in Eq. (21) and Eq. (22), we
may define the complex energy density function in time and frequency from Eq, (23) as
e(r,f)é. u(tYyU*(Fyexp(-2mifty . (24)
Then the energy density spectrum is
Je(t.fy de = [UCH|? ;

the energy density waveform is

feqe fy df = Ju(ey?

I eqe, fy deef

i
tn

the total energy of the analytic signal.

The energy of the analytic signal within a "cell” of area T8 centered at (¢,.f;) in the
time-f{requency plane is given by

1,472 Fy+8 1

ETB: €(.’.f) dfdt .

EXAMPLES OF NARROWBAND AMBIGUITY FUNCTIONS
Single Gaussian Pulse

We consider first an example discussed by Weoodward (1). Only siightly more general
than Woodward's simplest pulse is the single Gaussian pulse

u(t) - kexp(-atdy . a -0 . (25)
where the parameter . determines the width of the pulse, and k (2a »)! 4 so thai

lu2¢ty de 1,

+ e oI
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8 D. A. SWICK

It is shown in Appendix B that
e Xu(T.®) : exp(-a1¥/2 -m2d2/2a-mivT) . (26)
Thus,
Ixo(7. )% exp (-(ar? 47207/ a)] | @n

and contours of constant ambiguity are given by the ellipse ar? + »20%/a = constant, as
shown in Fig. 1.

SHORT PULSE {0) ¥ _ o} |

LONG PULSE (a< ™)

e

Fig. 1 - Curves of constant ambiguity:

IxI? = e?

Note that

IRy - Ixy(7.0)|2 = exp (-ar?)

I (@12 = [X,(0.9)12 - exp (-m203/a)

so that in this case the ambiguity function is factorable: [|x(r.®){*  ‘R(7)? |+ ();?.
This result is not general. When it holds we have from Egs. (7), (10), and (17) that
TF 1,

Single Rectangular Pulse

Let u(t) = (2a)"''3, 1t| < a, zero elsewhere. In Woodward's (1) notation,
u(t) = (2a)"! 2rect(ts2a). Then
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Yo (T.9)  Heafuct)y utct 7Ty Ha{(2a) drect [(2t-7)/2(2a~ |T])])

b

[(1-|7l/2a)} sinc [(2a-iTi) @) exp(-ni®dT), |7| < 2a
0. 7| » 2a (28)

and
],\‘u(—r.ib)l2 s (1-rt/2ay sine? [(2a- 2 (@), Tl 2a . (29)

‘ s
zero elsewhere, where sinc x = sin “x ux.

Modulated Uniform Pulse Train
To facilitate Woodward's next example, the Gaussian pulse train, we consider a train

of {Dirac) delta functions. Eschewing questions of rigor and using Woodward's notation,
we let

w(t) ) act-nT)y : repr 5(t) .

W) -'%cambl/rl= ;—Zs(f%)

If the pulse repetition period 7 is unity, the train of delta functions Fourier trans-
forms into itself.

The GACF of a train of delta functions is shown in Appendix C to be
X (T, 9) :%"Z; &(T7-nT) 8 (0 . i;_—) (30)

This "bed of nails" (5,22, 33) is shown in Fig. 2, drawn as if the delta functions had finite
amplitude.

Let a general pulse train be represented ky

v(t) - tepru(t) - u(t) ,2.8¢t nTy = u(t)y«w(t) . (31}

; By Theorem 5 we have

X AT ®) = X (7.9) u X 7. D)
T

: :-;_-Z5(‘9--;'-)]xu(d.¢)5/1~n7—a) da

_;_Z N(T-nT.0) 5 (o--';'—)- (32)

nom
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INFINITUM

v

Fig. 2 - "Bed of Nails" generalized
autocorrelation function

If the pulse train of Eq. (31) is, in turn, modulated by an envelope function x(t), the
resulting waveform and its spectrum may be represented by

y(t) = x(tyv(t) and Y(F) = X(DHH.V(f) .
Using Theorem 5 and Eq. (32) it follows that

X (T.9) = X (7.9) 6 X AT.9)

;%; fxx('r,v)xu(-r-nT.O-u)s(e -_:... V) dv

1 i m m
7 Z Xy (7.0 - —T-) Xy (7’ - nT.?) .

Thus, the ambiguity function is

. 2 1 _k - kN LAY ”
Xm0 5 ; x(ro - S)u(r-anpp (e - F)x(r )
k. {.mn

We now impose the additional conditions that the GACF of a singie pulse vanishes
for |7| > T and that the GACF of the envelope functicn vanisues for [¢| > 1°T. With
these conditions we can write

X (TAT Y XS =0T, &) = |x,(7-4T. 9|7 &, @3

2

k
o

where 5,, is the Kronecker delta. Hence,

k
X (ro-F

By -

SENSECTTIET JEIT NIV
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Ixy (7. 9)]? = 1'—12 _Z; Ix. (mt - %)r Xu ('r- nT,-';—'-)II : (34)

For ar:ctangularpulse, u(t) - (2a)”! 2rect (t’'2a), with a rectargular envelope,
x(ty = (2b) 1 2 rect (t/2b), Eq. (28) shows that the conditions Eq. (33) are approximately
satisfled if 2a < T << 2o, We then kave

(1~ |7]/25)?
————— D {(1- |7~ nT|/28)?

2 _
Ixy("-o)l = T2 yom

» sinc?((2a- |7 -nT|) n/T) sinc? [(2b- |7])(®-m/T)H]} .
Gaussian Pulse Train
If u(t) is a single short Gaussian pulse, we have from Eq. (26)

Xy(7-nT. @) x3(7-mT,d) = exp {-%[(‘r-rﬂ')2 + (-r—mT)’] - 1’3 o - nid’(m-n)T}

2
= (~1)("=)8T en {- -;- [(-r-nT):l + (-r—mT)z] - 7—;— @7} .

If n - m, this equation reduces to |x,(7- nT.®)|® in agreement with the conditions
in Eq. (33). However, for n = m, the product does not exactly vanish; there is some
overlap of the Gaussian tails. We will have a close approximation if

exp {- 52- [(-r-rﬂ')2 + (-r-mT)z}} <«<1, V¥mzn, Vr.

This requirement is satisfied if 472 - 0, as must be the case for a short Gaussian
pulse — moder2te T requires large a.

Similarly, if x (t) is8 a broad Gaussian envelope, x(t) - k' exp (-bt?), we have again
from Eq. (26) with b replacing a:

v, (7. ® n>x‘(-r [ m. ex| br? m {(d: n\l + ml mi(m= )
D - = T O - =] - - — -— -— - — T
"( T/ T) P |\ ( T) T

~ 2 2
“cveer el 23] (o 41

If » n, this reduces to

2
Nx (T-¢ ‘ﬂ)
T

If m = n, werequire 1 b72 >> 0. Thus, for T moderate, we must have h very small,
consistent with the broad Gaussian envelope,

Thus, if b - T .. 4, the ambiguity function for a train of narrow Gaussian pulses
with a broad envelope, obtained from Egs. (34) and (27), is
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11 . n? (m\ nl my
[ X, (T .Y 73 ;.Z:. exp[—a(v'-nT)2 iy (-7:) -br? - T ( - ?)] . (35)

For each n and =, the contours of constant ambiguity are ellipses. Centers of
ellipses are spaced at intervals of T in 7 and 1/7 in ¢, and the overall ambiguity de-
creases exponentially in ~ and ¢,

A gketch of this ambiguity function is given in Fig. 19 on page 122 of Ref. 1.

Single Gaussian Pulse with Linear Frequency Modulation

vty = u(t)exp (ibt3y for any uw(t), the "instantanecus frequency" is

We

3i=
O.ln_

£

4

- (bt?y = be/m.

Thus, 7, varies linearly with time, The GACF is

X, (T.®) = fu(t)v¥(t~T)exp(-2midt) dt

exp (-ib7?) [u(t)u*(t-Tyexp [~2ni (®-br/my t]dt
= exp (b7 x (7. &=~ bT/m) .
Hence,
Ixe(7. ®)|2 = |x,(m.@-b7/m)|? . 126)
From Eq. (36) we see that
Ix (7.b7/m |2 =[x (7, 0y 2.

Taat is, the ambiguity along a line ¢ - br/n, whose slope i8 equal to the rate of change
of the instantatieous frequency, is equal to the ambiguity along the r axis in the absence
of frequency modulation.

For the single Gaussian pulse with linear FM, we have from Egs. (27) and (36)

L r|? - _z-ﬂgo_sz.
IX (T, }|° = exp |-aT ry -

Curves of constant ambiguity are again ellipses,

b2 21b L
2. 2 -
(a + -a—) T = T¢ + - ®2 = constant . 37)

The eccentricity of these constant ambiguity ellipses depends on both a and b, and
their axes are rotated with respect to the 7,0 axes by an angle ¢, where

tan 26 = 2mb/[n? - (a2 + b2Y) | (38)

as is shown in Appendix D.




PP PNIRWE L T PSPPI St . UM AR SIME ey s ey

NRL REPORT 7007 13

Note that in this case

]
[R(T)P x(®)|? = exp [ (a + -Z—)-r?] exp (-n2d2/a) ¢ |y (7, 9|}

The Ideal Ambiguity Function and its Approximation

We saw in Eq. (27) and in Fig. 1 that the parameter a suifices to reduce the ambi-
guity in either the = direction or the ¢ direction but not in both. Equation (37) shows that
with two parameters it is possible to reduce the ambiguity both along the = axis and the
¢ axis but not simultaneously along a line @ = » tan ¢. One would surmise that with ad-
ditional parameters we might do better. Ideally, we would like the ambiguity function to
be a delta function at the origin, but this we cannot achieve. We might Lope to obtain as
an approximation a narrow spike in both directions as showa in Fig. 3.

1x)?

]
' ¢
Fig. 3 - Approximation to
ideal ambiguity function

Equation (35) and Woodward's Fig. 19 show that with a train of pulses we can reduce
the ambiguity in all directions in the vicinity of the origin to an arbitrarily low level.
We do this, however, at the expense of having additional peaks appear elsewhere. This
is a consequence of Theorem 2; if we reduce the ambiguity in one place it must pop up
clscwhere so that the total area of the ambiguity surface remains constant.

The closest to the ideal ambiguity function we can expect is the so-~called "thumb-
tack" ambiguity function. This consists of a narrow spike surrounded by a uniformly low
pedestal, with most of the volume lying under the pedestal. We do not know of any wave-
form which produces the "thumbtack” ambiguity function. For many applications, an
ambiguity free region near the origin, as obtainable with a train of pulses, is sufficient.

Pseudo-Random Sequences
We recall that the ambiguity function along the -+ axis is the square of the autocor-

relation function of the signal (see Eq. (13)). Thus, to approximate the "thumbtack’ am-
biguity function, a necessary but not suificient condition is that the autocorrelation function

i
|
|
|
i
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14 D. A. SWICK

of the signal be small near the origin. One practical signal known to have such an auto-
correlation function is the signal generated by maximum length pseudo-random sequences.
Such a sequence, {a;}, may be specified by its recursion formula

8,- = T
-~
iwl

Cidiy . E=0.12 ... (39)

where ¢; = 0 or 1 and } indicates modulo 2 summation and by the initial conditions given
by the values of

a,

I TR Ly -

A new sequence formed by the modulo ¢ addition of a maximal-length pseudo- random
sequence and a nontrivial shift of itself will be a shifted version of the original sequence.
That is, if

b;= a; @a;,,7, where T/ 0 (mod 2"-1)

n n
= JZ‘ Cjdi.j @ ‘Z CiBi,T-j »

b= ¥ c;j(a;.;® a1}

[
-~

n
= E cjbi.; .
i

Thus, {b;} obeys the same recursion relation as {z;}. Since {s;} contains all
n-tuples (except the all zero n-tuple), these sequences are idential to within a phase
shift.

This so-called "'shift-and-add'" property can be used to obtain the narrowband ambi-
guity function of signals generated by such sequences for time differences of ~ - k¢,
where & is an integer and ¢, is the shifting pericd of the generator.

The additive group of integers modulo 2 is isomorphic to the group consisting of -1
and 1 with multiplication as the group cperation. If we let s(t) represent a signal ob-
tained from a pseudo-random sequence of -1's and 1's, the "shift-and-add' property
becomes a "shift-and-multiply" property, as shown in Appendix E,

s(t)ys(t-kty) = s(t-k'tyy .

where k and k' are integers. Thus from Eq. (11)

e e
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Xkt ) - f s(t)s (t-kty)exp(-2midt) dt

n

J. s(t-k't )exp(-2ri®t) dt
- exp (-2ik dt ) S(9) .
Therefore,
Ix ke, @)1 = [S(o)* .

That is, for = = kt,, the narrowband ambiguity function of maximal-length pseudo-
random signals is proportional to the power spectrum and is independent of k.

GENERALIZATIONS OF NARROWBAND AMBIGUITY FUNCTIONS
Cross-Ambiguity Function

An extension of the concept of ambiguity functions to two waveforms was defined by
Stutt (7).

Let u,(t) and u,(t) be two complex waveforms. We define the generalized cros:
correlation function as

Xu(‘ﬁ‘t’) A J u‘(l)uz*(f' 1) exp(~2midt) dt (40)

= JUSCEYU(F+ ) exp(2mifT) dF (41
and the cross-ambiguity function as

“2)
AL (r.®) = X (7. &)

These functions may be useful when it is desired to identifly one of many possible wave-
: forms. Some, but not all, of the properties of the autoambiguity function apply to the
- cross-ambiguity function. For example, by Parseval's thcorem we have

g (1@ 14 dd = [ Juyuf(e-7)R de .

F’ SR T TV T R AT T AT R
¥ i

; so that
; S X (r. &y addr - [ {u,(6)i? [ luy(e-7)i2 drdt = 1,
T

if the energy in both waveforms is normalized to unity. Furthermore,
i Ng(m 0y Tunyuct -y de .

,\'”(0.0) I U;(t')Ul(lkd))dl’ .
b
.
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but

H

1%,,€0,0)1% = |fu(t)ub(et) de?

[

[ lug )] e [ luycey? de = 1
by the Cauchy-Schwarz inequality,
Therefore, if u,(t) = ku,(t), where k is a constant,
Ix,,(0,03]* <1, (43)
in contrast with Eq. (15). Also,

| ugCty ul(t-7) exp(-2mivt) de|?

1]

|X; (7,092

FlugeyPdef e -y exp(-2mive)|P dt = 1. (44)

"

It does not follow from this relationsnip that lxu(-r.tb)l2 < Ix,,(o.O)l’.

Infact, if v () = uy(t-7g)exp (2midyt), 7,, ¥, = 0, then equality holds in Eq. (44):
[X12(7q . ®0)|? = 1. I, in addition,

ug(t~7)exp(2mi®t) & kuy(t)
then from Eq. (43),
1X4,(0.0)[* < 1,
go that in this case ixu(O.O)l2 < |Xy9(7o. ®5)1* . In this case,
1%,200.0)|% = [ ugt = 7o) exp (2midyty uh(e) de|? = |x,(7,.9)|? .

By proof similar to that for Theorem 4 it can be shown that the generalization be-
comes

IT 1%x,3¢7.9)|? exp ((~2mi (f7~ ®t)]) d7d® = X (L FYxE, 0t 6y . (45)

In place of the symmetry relation, Eq. (20), we have

X a(~To=®) = [u (t)uf(t+7)exp (2midr) dt
= exp (-2midr) [u (t-7) uj(t) exp (2nidt) dt
= exp (-27idr) X3 (T.®) .
Hence,
1X42 (-Te=®)]3 = |, (T ) . (46)

b
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Convolution Theorems
Theorem 7

Let u (t) = v (tysw (t), uy,(t) = vy(t)*wy(t). Then
Avuluz(‘f,‘b) = XV1v2(7'¢)“ Xy w. (T8
7 32
- xvlwz("-@):x,‘v:("ﬁ) - 47
The proof is similar to that of Th orem 5.
Similarly, if v, (t) = v;(t) w,(t) and u,(¢) - v (t) w,(t), then
Xuluz(."ql) : )-'vlvz('r'@) & lewz(-r'w)

= xvlwz('r"b) 6)‘\;1\'2(7’,@) . (48)

Invariance Relations for the Real and Imaginary Parts of Ambiguity
Functions of Analytic Waveforms (Ref. 7)

Let x ,(7.0) = {,;;(7.®) + ig,,(7.0) be the generalized cross-correlation function of
analytic waveforms u,(t) and u,(t). Then

SI ¢4y drd® = [[ £3 (7.0) d7dd = 172, (49

if u,(t) and u,(t) are both normalized.

Proof
11 Ixga(7 @) drde = 1

= [T [¢3,(1.0) + £3,(7.9)] dd® .

Since
Cip 7 (DX + X1
I ¢h(r@)ydrde = (1.8) [ (x2,+ 2 |xy,° + x12) drdd

=12+ f (xd, v x7]) drdo .

But

e ]

v e S

b
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[I x$33(r 0y drd® = [[ff Uy(HYUF(F+ @)U, (v)US(w + @)
x exp [-2mi(f+v)7) dfdvdrdd
= JJU (O US(F+ @)Uy (- U (-£+ d) dFdO = 0,
ince u,(t) is analytic, so that

Uy(fy=0, f<0

and
Upy(-F) =0, F>0.
Similarly,
JI x{(r.®)drde = 0 ,
so '
I ¢3¢ dydrdd - 1/2
hence,

If €3,(7.@)drdd = 1/2 ;

Notice that the autoambiguity function is a special case of the cross-ambiguity func-
tion, so that in general the real and imaginary parts of the ambiguity function of analytic
signals contribute equally to the invariant volume under the ambiguity surface.

The Most General Ambiguity Function

Before considering other ambiguity functions, it is of interest to reformulate the
problem in complete generality. From this generalization we will rederive the previous
results and then define an angular ambiguity function. The generalization is used in the
companion report to obtain a wideband ambiguity function.

Let s,(t) and s,(¢t) be functions, square integra! = on (-=.»), represeating signals
which we wish to resolve. Obviously, if s, and s, ar. to be resclved at all, they must
differ in some respect. As in Eq. (1), we use a mean-square criterion to maximize their
difference. That is, we wish to maximize

di= [|s (t)~ sa(t)|2 dt

i

Fispce)]® de [ sceyl® de - 2R€[f s (1) shee) de] . (50)

Equivalently (as in Eq. 2), we can achieve maximum resoclution by minimizing
Xa n,| OF lx_l,z 3, where

Xais, & [s(tyshtrde . (51)

SRy
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|Xnyv,]? may be termed the "most general ambiguity function.”" It is too general io be
useful in itself; its only value lies in the fact that from it we can obtain less general but
more useful ambiguity functions. The argument and functional form of Xs, ., depend,

of course, on the characteristics of s, and s, that are, in fact, distinguishable,

1. i s,(t) - u(t) (which may be the low-frequency part of a high-frequency wave-
form ¢ () = u(t)exp(iwt) but need not be so restricted) and if s,(¢) = u(t-7), a time-

shifted version of the same waveform, we have

Xs s, = Xy(7.0) = fu(tyub(t~7)dt = R(TH ,

the complex autocorrelation function, Eq. (5). In this case |>(.l.2|z = |R(7)|?, the range
ambiguity function.

"2, I s,(t) = u(t) and if s,(t) = u(t) exp(2nidt), a frequency-shifted version of the
same waveform, we have

Xiyay = X,0.9) = [ lu(t)|? exp (-2mivt) dt = x(9) .

the frequency autocorrelation function, Eq. (8).
3. U s,(¢ty=u(eyand if sy(t) = u(t=7) exp [27i0 (t - T)], a time- and frequency-
shifted version of the same waveform, we have (neglecting exp (- 2ni®or)) -
Xa ap @ Xu(7h®) = Su(tyu*(t-T1) exp(-2midt) dt ,
as in Eq. (11).
4. O s,(t) = ug(ty and if s,(¢) = uy(t- 7y exp [27i®(t -7)], a time- and frequency-
shifted version of a different waveform, we have

Xy, T Nugu (Ti®) = ful(t)u‘;(t-T)t‘xp(—Z‘ni@t)dt .

as in Eq. (40).

Angular Ambiguity Function

The distinguishing features between s, and s, need not be temporal. By considera-
tion of spatial differences, Urkowitz et al. (13) define an angular ambiguity function.

We consider two plane waves from distant sources incident on a linear aperture.
Let x be the distance along the aperture from a reference point (Fig. 4) and let v, and
¢, be the angles between the directions of arrival of the waveironts and the normal to
the aperture. Let s(t) represent a signal transmitted with a propagation velocity ¢, as-
sumed constant, If the incide t waves are echoes from stationary targets at the same

range, then

R o

RN =
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x sin 6,

5,(t) = s (t,x0,)= s\t =T ——7—)
] x sin 6,

5,(t) = s (t.x,0,) = s(z T s

and from Eq. (51)

x sin 6, X sin 4,
X,l,z(x.()l.O?):fs t - T - ——— ¥t - T ——Z] dt

[+ <

sin 8, ~ sin 6 .
[ s(e)ys* [t + X (———lc——’>Jdt .
4

If v = (sing;~ singy)re, then Xy s (x.v) = [ s(t) s¥(t+xv) dt = R,(xv), where R,(*) is
the complex au: .cerrelatioy function of the transmitted signal,

Urkowitz et al. define the angular ambiguity function J (v) as
Ty 2 TG Ry (xvy dx . (52)

where I(x) is the "{llumination function" of the aperture. A detailed discussion of the
illumination funciion and its spatial Fourier transform, the "space pattern” of the aper-
ture, is beyund the scope of the present treatment.

if resolution in both azimuth and elevation is considered, a two-dimensional illumi-
nation function 7(x.y) is required, and a two-dimensional angular ambiguity function is
defined. If I(x. vy I,(x) I,(y), the two-dimensional] angular ambiguity {unction be-
comes the prcduct of the individual ambiguity functions.

If the targete are at different ranges and are moving with different radial components
of velocity, a four-dimensional ambiguity function in azimuth, elevation, range, and "range
rate'" (Doppler shift) is required. For narrowband signals this four-dimensional ambi-
guity function is separable into the product of the range-Doppler ambiguity function and
the azimuth-elevation ambiguity function. The same is true, in general, of a six-
dimensional formulation which includes angular velocity as well,

b
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If the illumination function is complex, Eq. (52) cannot account for the effect of the
aperture phase function on angular resolution. To avoid this difficulty and to avoid de-

pendence of resolution on the orientation of a receiving array, Procopio et al, (15) replace

Eq. (50) with the integrated squared difference criterion
€2 ® 11 [5,(0.0,.9,) - 5,(t.0,.9,)|* sin ¢ dododt
where

8,(2,0,.0,) = [[ I{x,y)s (t.x.y.0,.0) dxdy

§0t.0,.9,) = [N I(x.y)s,(t.x,7.6,.9,) dxdy

are the signals recejved Ly the eutire array, and the angular orientation of the array is

given by the cuoriiinaves ¢, ¢. An angular ambiguity function may now be defined as
Xt py|°, where

a - .
X(a. By TSI 8,(t.0,.0)) 51(t.0,,9,) sin 6 dgdddt
where ¢ - 6, - 0, and g - ¢, - ©,.

Additional flexibility (and complexity) is obtained by allowing the illuminating func-
tion I(x,y,t) to be time varying.
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For [X(T.9)]
and by Parseval's theorem,

[x(r.®)] 3o

[ x(7.@)]? dodr

by the Cauchy-Schwarz inequality.

PROOFS OF THEOREMS 1 THROUGH 4

Ju(tyu™(t=7)exp(-2midt) dt

= JITUGHUS(Fyexp(2mi [t - f(t-T) -&t]) dirdfdt
= [fUGYUR(EY 8 - (F+®)] exp(2mifr) dudf

= JUF+ )Y U*(Fyexp(2nifr)y di ,

using the well-known properties of the Dirac delta function 5 (.).

"

"

IN(T.9)|? = [Ju(t)yut(t- Ty exp(=2midt) dt}?

s fluqeyPdt fjut-7y2 de = 1.

[fIx(r. )2 exp [-27i (F7- §t)) dT7dd

Appendix A

b

Fepluryur(e-ny .

u(tyu*(t-T)

Jlucey? luce-7y[? de .

Jluey? fluqry|? drdt = 1.

i
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Jiffuqnyu*(n=r)exp(=2mi®n) *({Hu({~7)
x exp (2mi®f) exp [-2mi(f7 - &t)]) dnd{drdd

[fumyuw(n-7) u'(n -t)u(n-t-T)exp(~2mifr) dndr

JTumyu*(n-t)yu(Eyu(f=t) exp [-2mif (9~ £)] dndf

= |x(t. H? .
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Appendix B
GACF OF A SINGLE GAUSSIAN PULSE

u(ty = (2a/m)t/4exp(-at?), a>0

X(7T.®) = (2a/m)1 2 [ exp [-at? - a(t-T7)2 - 27idt) dt

= (2a/m)} 2exp (-a73/2) Syglexp [-2a(t - 17/2)Y} .

From Woodward (1), page 28, "pair 3," we have ¥,/ [exp (-nt2)] = exp (-mf2).

be shown as follows:

Sy plexp(-mtd))]

Then
Jy g lexp (-2at?))

by Woodward's "Rule 8," and
¥or(exp [-2a(t - 7/2)?))

f exp(-wt2~2mift) dt

exp(-‘nﬂ)j exp [~ (t+iF) dt

@il
exp (-mf3) exp (-mt?) dt

w4 if

(BY)

This can

exp (-nf?) J‘ exp (=t dt = exp (-nf?) .

= (n/2a) " 3exp (~ndi3/2a)

(m72a)t 2exp [~n2f3/2a - 2mif7/2)

by "Rule 6." Applying this result to Eq. (B1) we have

X(T.®) - exp(-ar1/2-n2¢?/2a-ni®7) .

27
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Appendix C

GACF OF A TRAIN OF DELTA FUNCTIONS

L)

w(t)y = ) &(t=-naT)

)

Xe(7.®) = . [8(t-nTy5 (t-7-mT)exp(-27idt) dt

Now consider the formal Fourier series expansion

Z: S(b-n/T) = Z C, exp (- 27in®T) .
n n

Tuen
1:2r
) 5(®-n/T) exp (2nim®T) db = 1
" Ter/ar
17271
= Z C, f exp (-27i (n-m) ®T] do
" -1’27

= ) Cpbpe/T = G,/T ,
"

sothat C. = T, ¥m, Hence,

2. exp(~2mimdTy = T°1 ) 5(d-mT)

Xy(7.®) = TV 3" 5(7-nT)5(®=m/T) .

28

Z 5((n-myT-7]lexp(-2mindT) = Z s(7-nT) exp (-2mim®T) .
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Appendix D
ROTATION OF AXES OF THE AMBIGUITY DIAGRAM OF A SINGLE
GAUSSIAN PULSE WITH LINEAR FREQUENCY MODULATION
Equation (37) will be in the standard form for an ellipse if we define new axes, 7°,

@' rotated by an angle ¢ with respect to the », ¢ axes, where

T=7'cos g - d' sin@

d-7'"sing + ®' cos 6 .

If this is substituted in Eq. (37), rewritten in the form A72 + B7¢ + 92 = K, and if

the coefficient of 7'¢’ is required to vanish, we obtain tan 20 = B/(A-C) from which
Eq. (38) follows,

23
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Appendix E
MULTIPLICATIVE PROPERTY OF PSEUDO-RANDOM SIGNALS

Theorem

Let s(¢) represent a signal obtained from a maximal-length pseudo-random sequence
of -18 and 1s, of infinite duration. Let k be an integer, k 4 0 (mod p), where p is the

period of the pseudo-random sequence, and let ¢, be the shifting period of the generator
producing the signal. Then s(t)s(t-kt)) = s(t-k't,), where k' is also an integer.

Proof

We may write

scty = 3 agan .

where (s} is the pseudo-random sequence, and}

1, (i-1)t, <t < it
a;(t) 2{ ’ °. (E1)
0., otherwise
Then
s(t-kty) = ) @A (t-ke) = T a; ,8i(t) .
7 J
since
Akt :{;, (i=1)t, < t-kt, < it . L, (i+k=1)ty <t < (ivkye,
0, otherwise 0, otherwise
T A () = Ay, i j =ik
Thus -
S(E)s(t-ktg) o 3 3 aia A6 AL (E2)
i J
Now

1This notation 18 similar to that used on p. 18 of J, I.. Lawson and G. E. Uhlenbeck, ""Threshold Sig-
nals," New York:McGraw [ill,&950. I am grateful to Dr. H. L. Saxton for calling my attention toit.

30

e —— e T

| (1" —




SRS o L

L

L

EE

»

T T A T T e A P NS LI A WSO T = A o

NRL REPORT 7007 31

MBik 7 88 (kojeiy T Bkt (E3)

where k' is an integer by the "shift-and-multiply" property of pseudo-random sequences
of 1s and -18.t

Using Eq. (E1), we have
1, [(i=1)t, <t <itgd N {(ji=1)t, <t <itg)

NOING! {

0., otherwise
1, to[mex (4,j) = 1] <t <ty min(i.))

0, otherwise

If i < j, this product vanishes unless (j-1)¢, < ¢t < ity; thismeans j - 1 < i ¢ j,
which can only &+ satisfied for i = j. Similarly, if i 2 j, 4;(¢)Aj(¢) = Ounless
(i-1)t, < t < jt,, for whichweget i - 1 < j < i, and again ;= i,

Thus, we can write A;(¢)A;(¢) = A;(t)s;; and from Eqs, (E2) and (E3J),

s(tys(e-kty)

Z Z a0 hi(8)8;
i )

"

Z a0 B;08)

"

s(t-k't)) .

Q.E.D,

tSec. for example, C. McCoy, Jr,, “FPower Spectrum Estimates of Sampled Pseudo-Random Scquences,”

NRL Report 6673, p. 68, Dee, 29, 1967; Thesls, The George Washington University, Feb, 22, 1968,
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